S. Simple Interest and Compound
Interest

Ramus ... boasted of his familiarity with all the shops and market-places in
Paris, where mathematics was put to use. He held that only those parts of
current mathematics were worth teaching that had a demonstrable practical
application. Mathematics as studied in universities should not be more than a
systematic treatment of mathematical methods in use by merchants, navigators,
surveyors and engineers. (van Berkel 1988, p.157)

Basic Interest Concepts

Interest is fundamental to the economic process. The production of
goods and services requires the combination of capital and labour, with
(‘originary’) interest arising from the return to invested capital. When
capital is securitized into financial instruments, such as annuities, bills
of exchange, or joint stocks, (‘loan’) interest is associated with
compensating the owner of the capital for foregoing the return
obtainable elsewhere (B6hm-Bawerk 1914, p.6). The presence of
interest necessitates the development of techniques for calculating
interest. One type of interest calculation concerns the division of profits
from a business venture. For example, if a group of merchants form
a partnership in which capital is invested for different periods of time,
some method is required for determining the share (interest) of each
pariner when the partnership is dissolved.

Various types of interest calculations arise in the analysis of financial
securities. A simple and important historical example involved the use
of payback or ‘years’ purchase’ (= Price/annuity payment) to reflect
relative annuity value. Years’ purchase was also used to value other
types of fixed income cash flows. Years’ purchase was used as a
measure of value whether the annuity was redeemable, perpetual, or for
life. For a perpetual annuity, years’ purchase would be the inverse of
the true yield interest rate. However, for other types of annuities the
precise relation between years’ purchase and the offered interest rate is
not as clear. Yet, on balance, years’ purchase does represent a quick
and useful method of determining relative value, though the practice of
using years’ purchase is only a crude method of arriving at an interest
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rate measure. A form of years’ purchase, the current yield, which can
be used to assess relative bond values, survived until the advent of
modern computers permitted ready calculation of the yield to maturity.

Various methods can be used to compare the relative values of fixed
income cash flows. In the less developed capital markets of the 16th to
18th centuries, the use of years’ purchase avoided the confusion
associated with quoting different valuations for the same security. The
stated interest rate on a fixed income security determined the annuity
payment, which invariably involved multiplying the principal value by
the stated interest rate to determine the payment. However, if the
annuity was sold at a price other than the par value, the stated interest
would differ from the yield to maturity, another interest rate measure.
Another related example arises with the calculation of loan interest. If
the stated interest rate on a loan of T years is 10%, the size of the
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regular loan payment would differ depending on whether simple or
compound interest is used, as well as the compounding frequency if
compound interest is involved.

Like other commodities, financial securities are traded in the market
on the basis of price. In many situations, the price does not provide a
ready measure for comparing the relative values of different securities.
In modern financial markets, interest calculations are used to provide
a more useful measure of value. One example where interest rate
comparisons are useful occurs with financial securities that offer cash
flows differing in size and timing, such as an annuity certain paying $4
for T years and a zero coupon bond paying $Y in T years.! Comparing
quoted security prices does not provide a useful method of comparing
value in these cases. Using the quoted prices, the interest rates offered
by each security can be determined and used to compare the promised
cash flows. A variety of different methodologies for determining the
‘interest rate’ are available.

While usually guided by common sense, the interest calculation
method used in a specific situation depends upon convention. For
example, in the US, the modern market convention is to quote discount
rates for trading money market securities. Discount rates are not
directly comparable to true yields, for example, Stigum (1982).> While
a true yield calculation would appear to be more theoretically sensible,
the convention of using discount rates has a long history, dating at least
from the early trading of bills of exchange in the Middle Ages. Other
examples of unusual conventions abound. In Canada, the legally
defined convention for quoting mortgage interest rates is to use semi-
annual compounding, even though payments are made monthly. Also,
in the various instances where simple interest calculations are the
convention, compounding is ignored and ‘profit on profit’ is not
recognized.

An important topic in the early history of financial economics is the
evolution of particular methods of determining interest. Conventions
such as the use of years’ purchase provided guidance to market
participants, but years’ purchase lacked precision and was not applicable
to all security cash flows, for example, zero coupon instruments. The
evolution of interest calculations involved increasing mathematical
sophistication. Acceptance into market practice required a general level
of sophistication on the part of market participants. In this process, the
reckoning masters and algorists played a key role. The commercial
arithmetics reflected the sophistication that had been achieved at a given
point in time. From these sources, it would appear as though the rule
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of three was in common use for interest calculations at the end of the
15th century. The use of compound interest calculations was becoming
widespread and well developed by the end of the 16th century.

Methods of Fixed Income Valuation

Allowing for deviations due to convention, the modern valuation of
fixed income cash flows involves both simple and compound interest.’
The value or price is calculated for a specific point in time. A present
value calculation provides the current price (present value) and a future
value calculation provides the price at some future time (future value).
Present value is determined by discounting future cash flows, which
involves dividing each future cash flow by the compound interest factor
appropriate for that time period. Future value is determined by
multiplying (compounding) each future cash flow by the compound
interest factor appropriate for the future time period where a price is
desired. Consistency requires that, for each specific time period, the
compound interest factor used for present and future value calculations
be directly related. Hence, future value and present value are inverse
operations. Because the current price is usually desired, present value
calculations are most commonly done.

From the generic present value and future value concepts, four basic
types of valuation problems can be distinguished: present value of single
cash flows; future value of single cash flows; present value of a
sequence of equal cash flows (annuity payments) that are paid at equal
intervals for T periods, usually referred to as annuities or annuities
certain; and, future value of a sequence of equal cash flows (annuity
payments). Valuation requires knowledge of: the price; the size of the
payment; the time period (term to maturity); and the interest (discount)
rate. Theoretically, provided with information on any three variables
it is possible to solve for the fourth variable. In the easiest problems
to solve, the term to maturity and interest rate are given and the
problem is to solve for the price given the size of the annuity payment
(a present value problem) or to determine the annuity payment required
to achieve a given terminal value (a future value problem). Because
present and future value are inverse problems, the same general
methodology is used to solve either problem.

The evolution of financial economics can be assessed relative to
which valuation techniques were in common practice at a particular
time. Many early calculations involved the use of simple interest,
where the compounding of interest, the payment of interest on
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accumulated interest, is ignored. Simple interest is still conventional
practice in modern financial markets for determining prices of fixed
income securities with less than one year to maturity. With simple
interest, the payout at maturity is determined by multiplying the
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principal value by one plus the stated interest rate (expressed as a
decimal fraction). Where an annualized interest rate is stated and the
time period of the investment is less than one year, the interest rate is
adjusted to reflect the length of time the investment is outstanding. For
example, if the annualized simple interest rate is i and there are n
months to the maturity date, when a single cash flow of $4 will be paid,
then the present value (P) or price of the security, at simple interest, is:

4

1+i-%
12

P =

Simple interest is theoretically appealing for valuing single cash flows
that are to be received within a year or less.

Simple interest can lead to complications when the time period for the
investment is greater than a year because of the method used to account
for the payment of compound interest or ‘profit on profit’. In the case
of simple interest, the convention is to make no compounding payments.
For example, if the single cash flow of $A of the previous example is
to be received in T years, instead of n months, then the payment of $4
at maturity would determine the price because $4 would have to equal
TGP) + P, or:

$4A
1+7Ti

This present value represents the accumulation of interest credits (iP)
over T years and the return of initial investment of P.

Per se, ignoring the payment of ‘profit on profit’ does not imply that
simple interest is theoretically flawed. In many situations, the method
of calculating interest has more to do with convention than with actual
impact on the returns from financial contracts. The interest convention
used determines the method for calculating the current price associated
with the final payout stated in a financial contract. For the example of
$4 to be paid in T years, both compound and simple interest can
produce the same present value (P) by adjusting the stated interest rate.
More generally, as long as the interest rate is calculated from an
observed price, even when the maturity date and final payout are not
known when the financial contract is initiated, the parties to the contract
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can still make informed decisions whatever the method used for
calculating returns.

Despite this, there are situations where important discrepancies can
arise between compound and simple interest calculations. In particular,
consider the problem of calculating the value of shares in a partnership
where the partners have participated for different lengths of time. By
ignoring ‘profit on profit’, simple interest will undervalue the shares of
those partners who have had funds invested for the longest period of
time. Similarly, simple interest would tend to favour partners who took
funds out of the enterprise over time. Attempts to account for the
discrepancy between simple and compound interest solutions by
adjusting the relative value of partners’ shares would be difficult, at
best. The commercial incentives to use compound interest in
calculating the value of shares in partnerships are considerable.

One important advantage of simple interest is that calculations can be
done using the basic arithmetical operations of multiplication and
division. While more theoretically satisfying, compound interest does
involve the evaluation of powers and roots. However, with the use of
compound interest tables, it is possible to transform standardized
compound interest problems into a form that can be handled using only
multiplication and division. To see this consider the basic problem of
determining the price to be paid today for the receipt of $M in T years
at a compound annual interest rate of 7%:

p=—M__ sum ——1——-]5($M)(PVIF|TJ>
(1 +n" a+n"

The preparation of early tables was facilitated by market conventions
and legal restrictions that required the use of only a small number of
possible interest rates.

Widespread adoption of compound interest for simple cash flows
required the use of tables that contained the PVIF (present value interest
factor for a payment of $1) numbers needed to simplify the calculations
for selected {T, r} combinations. Inversion of the PVIF number gives
the associated FVIF (future value interest factor for a payment of $1):

P

[ = T -
PVIF | T, 7 $M =P +71)

(A +7 =@FVIF | T, D =@VIF | T,»n"
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With some additional effort, PVIF tables could be used to evaluate more
complicated compound interest problems, such as pricing of annuities.
This could be done by brute force, discounting each individual cash
flow. However, in cases where annuity cash flows are equal until the
term to maturity, a simplification derived by applying the solution to a
geometric progression is available. This simplification is not obvious
and, judging from the solution to problems presented by Jean
Trenchant, did not appear to be well understood around the mid-16th
century. Yet, the result was known and correct solutions using PVIFA
(present value interest factor for an annuity of $1) are presented in other
16th century works such those by Simon Stevin.

To see the simplification required, consider the problem of
determining the price of a fixed term annuity, a stream of equal
payments of $4 made each year for T years at r%:

Annuity Price = ($4) [PVIFA | T, 1}

= $4 + $4 + $4 + ...+ __—__$A
@+n aqa+n02 a+»° a+nT
T
1 1 1
=1 (1 +7) r r{d+pn

Similarly, the FVIFA can also be calculated. The FVIFA is used to
determine the future value of series of equal payments, paid into a fund,
made each year for T years with the first payment starting in year 1 and
continuing each year until the final payment is made on the term to
maturity date:

Future Value of Annuity = ($4) [FVIFA | T, r]
=AU+ +84 A+ D2+ L +SA(L+P) + 84

T-1
YD N R N R et
=0 r

From this the relation between PVIFA and FVIFA follows:

1, . (FVIFA| T, n
a+n' a-+n’

PVIFA |T,n =111 -
r
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It follows that PVIF and PVIFA tables can be used to construct FVIF
and FVIFA values so only one pair of tables is required.

Another useful mathematical manipulation involves applying the
closed form for a geometric series [1/(1 - x)] to solve the pricing
formula for a perpetual annuity:*

1 1 1 1

= + + +

=1 L+ 1+r @+ @1+ »?

1 1+ L 1 + o
1+r L+r 1+ p2

1 1

_1+r 1 -1
1+7

-1
r

Observing that 0 < r < 1 which is sufficient to ensure convergence of
the geometric series, the pricing formula for a perpetual annuity follows
immediately from applying the solution for a geometric series to the
perpetual cash flow of $1. Recognizing the solution for the perpetual,
the PVIFA factor could be derived without much effort using the closed
form for a geometric progression of T terms: (1 - x7)/(1 - x). Using this
approach is instructive because it permits PVIFA values to be
calculated, without substantial effort, if only PVIF tables are available.
However, if numerous PVIFA calculations are needed, tables containing
the PVIFA numbers do substantially simplify the requisite calculations.

Origins of Some Mathematical Tools

An important topic in the early history of financial economics is the
process underlying the transition from simple to compound interest
calculations. There is historical evidence indicating that compound
interest was used in business transactions going back to ancient times,
for example, Divine (1959).  However, over time there was
considerable social resistance to compound interest, as reflected in
various legal and ecclesiastic prohibitions. At the beginning of the 16th
century, methods for calculating interest taught by reckoning masters
typically involved simple interest and the rule of three. Where
compound interest was used in Christian business, the practice was not
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advertised, though there is evidence that groups not subject to canon
law, such as Jewish money lenders, did use compound interest.

The transition of market practice from simple to compound interest
raises a number of interesting questions for study. One such question
concerns the impact of social restrictions, such as the scholastic usury
doctrine, on the recorded methods for calculating interest. To what
extent were social restrictions responsible for the use of simple interest,
as reflected in the commercial arithmetics? Was the proposed use of
simple arithmetic a ruse, with compound interest being the conventional
but unstated commercial practice? Or, were reckoning masters, bound
by training using operations such as the rule of three, unable to handle
the more advanced calculations required to determine compound
interest? Another related question concerns the mathematical
prerequisites needed to do compound interest calculations. Did
reckoning masters have the more advanced mathematical training to
undertake such alternative calculations?

Resolving questions surrounding the transition from simple to
compound interest calculations is not easy. There is mo specific
landmark text that can be pointed to as a benchmark for the change in
methods. The potential civil and ecclesiastical penalties associated with
violating Church doctrine on usury meant that merchants disguised
interest payments in various types of seemingly nonusurous contracts,
such as bills of exchange. However, it is possible to make some
indirect inferences based on information about the state of mathematical
knowledge. If the typical reckoning master was not equipped to
understand compound interest calculations, then it is unlikely that
compound interest would be a method that was widely used to
determine a ‘fair and just’ return on a fixed income investment or
partnership.

Significantly, the use of compound interest can require more than the
mechanical ability to do compound interest calculations. Mechanical
use of compound interest requires no more than the simple ability to do
operations such as multiplications using PVIF and PVIFA factors.
However, understanding the logic of compound interest operations
involves knowledge of powers, roots and some elements of algebra.
Widespread use of compound interest calculations would also mean that,
at least, PVIF tables would be found in historical manuscripts. Because
the availability of compound interest tables is almost essential to the
widespread implementation of compound interest calculations, the
availability and sophistication of tables for compound interest
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calculations can be used as a partial measure of the extent to which
compound interest was used in general business practice.

As for the mathematical knowledge needed, the arithmetic required
for simple interest calculations, such as the rule of three, involve
mathematics that were available to ancient civilizations. Evolution of
this aspect of commercial arithmetic is more associated with the
progressive adoption of Hindu-Arabic numerals and algorithms
replacing Roman numerals and the abacus. The mathematics needed for
basic compound interest calculations were also available from ancient
times. Calculation of powers such as (1 + r)" is an extension of
multiplication and the process of discounting involves only division.
The convention of using only a limited range of (percentage) integer
valued interest rates meant that a reckoning master, if need be, could
prepare rudimentary tables for selected compound interest calculations
without substantial effort.

Reckoning masters almost certainly had the mathematical knowledge
and ability to handle a restricted range of compound interest
calculations. However, there were many types of compound interest
problems that would pose considerable difficulty. For example, the
problem of solving for an interest rate, given the initial investment, cash
flows, and term to maturity, could be handled by trial and error if the
cash flows were small in number. More complicated cash flow
situations could be handled if sufficiently detailed tables were available.
Because the general problem of solving for a specific interest rate by
trial and error requires tables covering a wide range of {7, r}
combinations, such tables would have to be more detailed than would
be practical for a reckoning master to construct on their own. As noted
previously, the availability and sophistication of such tables is a
reflection of the acceptance and use of compound interest calculations.

The decidedly more complicated mathematical problem of solving for
an interest rate algebraically, as the root of an algebraic equation, was
restricted to only the simplest type of problems, if it was used at all.
Adequate algebraic methods for general solutions of the roots of cubic
and quartic equations did not appear until the 16th century with the
contributions of Tartaglia, Cardano and Ferrari, though less general
methods suitable for compound interest problems were available much
earlier. Up to modern times, there is little evidence that direct
algebraic methods ever had any popularity as a method of solving for
a specific interest rate in compound interest problems, except as
mathematical exercises. Until the advent of modern computers, trial
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and error, using tables combined with interpolation, was the preferred
approach for almost all practical applications.

The widespread use of annuities in lending and borrowing raises a
question about the use of compound interest in calculating prices for this
type of cash flow pattern. The mathematics required to reduce the
geometric progression associated with an annuity to the formula [(1/r) -

{1/(r(1 +7)")}] were known at least since Euclid (365?-?), and perhaps
as early as Babylonian times. Proposition 35 of Book IX of Euclid’s
Elements states the following (Boyer 1968, p.127) abstract solution to
the sum of a geometric progression: ‘If as many numbers as we please
be in continued proportion, and there be subtracted from the second and
last numbers equal to the first, then as the excess of the second is to the
first, so will the excess of the last be to all those before it.” With some
manipulation, the stated solution to geometric progression problem can
be applied to derive the familiar annuity formula.

Euclid’s Book IX, Proposition 35 rule was certainly known to
medieval writers (D. Smith 1958, v.2, p.502). The rule appears in the
Liber abaci of Fibonacci with more modern treatments appearing in
15th century Italian algebras. Chuquet states the rule in the Triparty in
a form that is readily adaptable to annuity calculations. Various other
presentations appear in the 16th century, by which time problems
involving the geometric progression were popular in mathematical texts.
The mathematics for the infinite form of the geometric progression, the
geometric series, was first examined by Archimedes around 225 B.C.
with the general formula being given by Vieta (Francois Viete, 1540-
1603). The similarity of the price of a perpetual annuity and the price
of an annuity with a very distant term to maturity makes it likely that,
given a specific interest rate and term to maturity, reckoning masters
were able to price perpetuities and annuities using compound interest
methods.

Some forms of compound interest calculations are solvable using
logarithms. Immediate examples of problems where logarithms would
ease the computational burden are: solving for the compound interest
rate of a single cash flow occurring in T periods; and, solving
compound interest rate problems involving less than one year to
maturity. The Scot, John Napier (1550-1617), is credited with
discovering the logarithm, with the discovery first appearing in his
Descriptio (1614) after twenty years of work. Napier developed
logarithms to primarily solve problems involving multiplication in
trigonometry but it was not long before individuals such as Henry
Briggs and Edward Wright extended the concept to base 10 and base e.
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By the middle of the century, the logarithm was well established in
Europe and applications of logarithms were appearing in published
arithmetics.
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Though not of central importance to the mathematics used in interest
calculations, the genesis of the series solution to log[l + x] is
interesting.® It is conventional in modern texts to derive this result as
an elementary application of Taylor’s theorem, which was initially
presented by Brook Taylor (1685-1731) in 1715. However, the series
approximation:

x2

3 4
log[l +x] =x - > + X - X 4 |
el ] 2 3 4

was presented much earlier by the Danish mathematician Nicolaus
Mercator (1620-1687) in Logarithmotechnia (1668).° While this
infinite series solution does appear to differ from the Taylor series
solution where the denominators in the nth series term is n!, it is
possible to show the two series are equivalent. The form of the series
solution given above is conventionally referred to as a Mercator series
(D. Smith 1958, v.2).

At what point did the mathematical content of commercial arithmetic
cease to progress? On this point, D. Smith (1958, v.1, p.444)
observes: ‘By [the close of the 17th century], arithmetic as we
ordinarily speak of it, referring to the numbers for commercial and
industrial purposes, was practically what it is today.” Though advances
were still to come in the application of probability theory to financial
valuation problems, as far as basic commercial arithmetic was
concerned, D. Smith’s view is essentially correct. Hence, based on this
brief overview of the mathematical and historical background up to the
close of the 17th century, what remains is to examine the practices that
were contained in the commercial arithmetics up to that time. Aside
from instruction on the basic operations of arithmetic and practical
extensions such as the rule of three, commercial arithmetics were also
filled with practical commercial problems. The solutions suggested to
these problems are, arguably, the most important source of information
on the accepted methods of calculation used by practitioners of the time.

Simple Interest in Partnerships

Methods of calculating interest are examined in the Treviso in three
problems involving the returns from partnership (Swetz 1987, pp.138-
9). No other attention is given to any situations involving interest
payments. The first of these problems is an elementary application of
the rule of three:
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Three merchants have invested their money in a partnership ... Piero put in
112 ducats, Polo 200 ducats and Zuanne 142 ducats. At the end of a certain
period they found that they had gained 563 ducats. Required is to know how
much falls to each man so that no one shall be cheated.

The solution to the problem is uninteresting from a mathematical
viewpoint.” However, the problem is of interest in illustrating the
general framework for practical partnership problems. In addition, the
author is careful to implicitly observe that if all partners have funds
invested for the same length of time, the solution to the problem is
independent of the endpoint of the partnership.

The second of the Treviso problems is more complicated in that the
pariners are permitted to be involved in the partnership for different
time periods (Swetz 1987, p.143):

Two merchants, Sebastino and Jacomo, have invested their money for gain in
a partnership. Sebastino put in 350 ducats on the first day of January, 1472,
and Jacomo 500 ducats, 14 grossi on the first day of July, 1472; and on the
first day of January, 1474 they found that they had gained 622 ducats.
Required is the share of each (man so that no one shall be cheated).

The proposed solution to this problem follows as an extension of
applying the rule of three given in the first problem. As such, this is
also a simple interest method of solution. Observing that the stated
solution does not admit the possibility of compound interest provides
considerable insight into the methods of calculation used in mercantile
practice during this period.

Considering the proposed solution in more detail requires knowing
that 1 ducat = 24 grossi and 1 grossi = 32 pizoli. The solution to the
problem proceeds by applying the rule of three which, in this case,
involves expressing the two contributions in grossi, 8400 grossi for
Sebastino and 12014 grossi for Jacomo with the addendum that ‘since
Sebastino has had his share in 6 months longer than Jacomo, we must
multiply each share by the length of its time’. Multiplying by 24
months gives Sebastino’s share as 201,600 and by 18 months gives
Jacomo’s share as 216,252. Taking the sum of these two shares
(417,852) for a divisor and applying the ‘rule of three’ gives the
solution of 300 ducats, 2 grossi, 8 pizoli and a remainder for Sebastino
and 321 ducats, 21 grossi, 13 pizoli and a remainder for Jacomo.

The Treviso solution to the partnership problem does not involve the
use of compound interest. Using semi-annual compounding, the
inclusion of compound interest would involve solving:
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4 3
85014 + 622 =350 (1 + L) + 50041+ L
24 2 24 2

The solution of r = 34.694% requires the evaluation of a quartic
equation. The associated shares would be 308.4 ducats (308 ducats, 9
grossi, 19 pizoli and remainder) for Sebastino and 313.6 ducats (313
ducats, 14 grossi, 12 pizoli and remainder) for Jacomo, a decidedly
different result than the ‘just’ result proposed in the Treviso.?

While this failure to allow for compound interest was conventional in
the early commercial arithmetics, there is evidence that accepted
practice was not due to a general ignorance of the concept. For
example, Italian manuscripts dating from the 14th and early 15th
century Tuscany contained variations of the following problem: ‘A man
loaned 100 lire to another and after 3 years he gives him 150 lire for
the principal and interest at annual compound interest. I ask you at
what rate was the lira loaned per month?’ (Franci and Rigatelli 1988).
In other manuscripts, four year compound interest problems were
proposed. The solutions proposed to these problems represent
important contributions to the early development of algebra in Europe.
Also of interest is Pegolotti (1936) which provides a 14th century Italian
manuscript containing tables for the compound interest calculation
1+ ,

At least two possible factors can be identified for the failure to
incorporate compound interest in valuing partnership returns, as
reflected in 15th century and early 16th century commercial arithmetics.
A first possible factor is simplicity of calculation. Even though the
compound interest solution had been identified, the tables required for
such calculations were mnot widely available, neither was the
mathematical knowledge required for the merchant community to
understand compound interest. While a reckoning master could be
consulted on the ‘just’ solution to complicated problems, those involved
in the day-to-day implementation of commercial arithmetic were
primarily clerks and merchants. The Treviso algorithm, while inexact,
only required applying the rule of three, a result that was at the heart
of early commercial arithmetic.

Simplicity of calculation and general lack of mathematical knowledge
imply that compound interest concepts were not typically incorporated
into the business decisions of the time. Another possible factor
supporting the Treviso solution was the usury restrictions imposed by
canon law. While partnerships could be used to disguise the payment
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of simple interest, the explicit recognition of a ‘profit on profit’
payment could bring the sanctions of canon law upon those requiring
the receipt of such a payment. For flagrant violation, these sanctions
could include excommunication and even banishment. If such payments
were made, and there is some anecdotal evidence that payment of
compound interest was a regular business practice at the time of the
Treviso, such payments were made in silence.

Strong evidence that the use of compound interest was common in the
commercial practice of the 15th century, at least in the important
financial centres such as Lyons, can be found in Chuquet’s Triparty.
On the subject of compound interest, the Triparty makes explicit
reference to the incongruity between the theoretically correct
mathematical calculation and recommended commercial practice for
calculating shares in partnerships reflected in the basic commercial
arithmetics. The manuscripts contained in the Triparty are actually
three main sections concerned with algebraic theory, and three other
parts containing problems, a geometry and a commercial arithmetic.
The latter is generally similar in content to the Treviso, reflecting the
similarity in the study of commercial arithmetic throughout Europe.
However, unlike the Treviso, the handling of compound interest is
recognized directly (pp.306-7):

Three merchants formed a company, one of whom put in 10 ecus which
remained there for the space of three years. The second put in 6 ecus which
remained there for 7 years, and the third put in 8 ecus which remained there
for four years. At the end of a period, 20 livres of profit was found. One
asks how much comes to each, considering the money and the time that each
has used it.

The answer proceeds with the usual application of the rule of three as
in the Treviso. After presenting this method and the solution Chuquet
states (p.307):

And the calculation is done, according to the style and opinion of some. And
in order for such reckoning to be of value, it is necessary to presuppose that
the principal or the capital alone has made a profit, and not the profit (itself).
And inasmuch as it is not thus, for the profit and the profit on the profit made
in merchandise can earn profit and profit on profit in proportion to the
principal, from day to day, from month to month and from year to year,
whereby a larger profit may ensue. Thus such calculations are null, and I
believe that among merchants no such companies are formed.
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Though the compound interest solution is not provided, Chuquet
definitely holds that calculation of compound interest is the regular
practice in calculating the returns from partnerships of unequal duration.

The upshot of this discussion is that it is difficult to tell from an
examination of the text of the basic commercial arithmetics such as the
Treviso whether the use of compound interest in determining shares in
partnerships was a widespread commercial practice. It is possible to
rationalize the Triparty manuscript evidence indicating common usage
of compound interest by arguing that social and commercial convention
at the time did not permit acknowledging that compound interest
calculations were used. In turn, the usury restriction was sufficiently
binding that it would have been unwise to incorporate payment of
compound interest, profit on profit, into the curriculum used to educate
merchant apprentices. In addition, the mathematical concepts involved
would have required a level of instruction substantively more advanced
than that required to motivate fundamental concepts such as the ‘rule
of three’. On balance, it seems most likely that the practice of using
compound interest to calculate partnership shares for investment periods
of unequal duration was conventional and that the practice was mot

revealed in written sources order to avoid the usury sanctions.
Compound Interest

Problems involving compound interest were known well before the
period under consideration. Mathematical tracts often used compound
interest problems to motivate the solution of algebraic equations. For
example, Franci and Rigatelli (1988, p.20) quote a 1395 Italian
manuscript that poses the following problem:

A man loaned 100 lire to another and after three years he gives him 150 for
the principal and interest at annual compound interest. I ask you at what rate
was the lira loaned per month?

The stated equation used to solve for this problem is the cubic equation
(® + 60x2 + 1200x = 4000). The 1395 manuscript recognizes that the
rule provided for solving the problem is not a general algebraic solution
to cubic equations, but is applicable to the general interest rate
calculation problems being posed.’

The level of algebraic sophistication in 14th century Italian
mathematics extended beyond the solution of specific cubic equations.
Quartic equations and, in very limited cases, higher order algebraic
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equations were also presented and solved. For example, the same 1395
Italian manuscript poses a compound interest problem requiring the
solution of a quartic equation:

A man loaned 100 lire to another and afier four years he gives him for the
principal and interest 160 lire at annual compound interest. I ask you are what
rate the lira was loaned per month?

The associated quartic equation (x* + 80x° + 2400x* + 32000x =
96000) is again stated and solved with the recognition that the solution
procedure to these types of compound interest problems is mnot
algebraically general. This type of quartic problem reflects the ability
of Italian mathematics of the time to solve algebraically for the interest
rate in practical compound interest problems.

The use of compound interest problems to motivate algebraic
solutions becomes increasingly common in mathematical manuscripts of
the 15th and 16th centuries. However, as in the stated solution in the
1395 manuscript, compound interest problems were often used to
illustrate the methods of algebra, not to facilitate commercial
applications where the price-given-interest-rate calculation would
typically involve substantially less mathematical skill. Widespread
practical use of this type of compound interest calculation does require
the availability of compound interest tables. The presence of such
tables in printed commercial arithmetics or ‘ready reckoners’ is an
excellent reflection of the extent of commercial use of compound
interest valuations. Such tables do not begin to appear in print until
about the mid 16th century, with detailed tables appearing only in the
late 16th century.

As for the content of commercial arithmetic texts, until the later part
of the 16th century compound interest problems are typically treated as
mathematical, as opposed to commercial, problems. Basic commercial
arithmetics, such as the Treviso, do not mention the subject. The
treatment of compound interest was restricted to the more sophisticated
mathematical texts, where a commercial arithmetic was included as one
part of a text also dealing with the theoretical aspects of mathematics.
Many of the mathematical texts that contain a section dealing with
commercial arithmetic, such as the Triparty, either do include
compound interest problems or include compound interest problems in
a section other than that devoted to commercial arithmetic. Other texts,
including Pacioli’s Summa, provide a description of compound interest
within the commercial arithmetic, without much elaboration.
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Yet, it is fair to say that, at the time of the Treviso, the calculation
of compound interest was recognized and understood. There were
certainly reckoning masters with the skill required to do the required
commercial calculations, if such calculations were needed, though
compound interest rate problems were still mostly of interest to
mathematicians. By the later part of the 16th century, compound
interest calculations were much more widespread, as evidenced by the
availability of tables needed to do compound interest calculations.
From this time to the middle of the 17th century, progress in
mathematics and commercial practice was substantial. Compound
interest problems were no longer of much interest to mathematicians
and commercial arithmetic gradually became the preserve of accountants
and other specialized merchants.

Compound interest was still of mathematical interest in the 15th and
early 16th century. Yet, the basic commercial arithmetics did not treat
this subject. Given that these texts were designed for instruction in
reckoning schools, this is not surprising. ~Merchants apprentices,
struggling to understand the rule of three, could not be expected to have
the mathematical skills to handle a concept that involved raising values
to powers. Yet, many reckoning masters would have such conceptual
ability. The implications of compound interest would be obvious to
merchants, even if social restrictions prevented overt discussion. All
this raises questions about the extent of compound interest calculations
being used in practice,’ with an important clue to solving this
question being found in Chuquet’s Triparty.

Seemingly, Chuquet’s observations appears to call into question the
validity of attributing the absence of compound interest problems in the
early commercial arithmetics to the complexity of the solutions. Yet,
the problem of determining a precise interest rate is more of a
mathematical problem than a practical one. The mathematical
motivation for compound interest problems is associated with solving
for the rate of interest, given the starting and ending values of the
investment. However, conventional practice was to state a rate of
interest, and from this the ending or starting value for an investment
could be readily calculated. Customary fixed interest rates were quoted
regularly, one instance being the triple contract which was often
referred to as a five-percent contract (Homer and Sylla 1991, p.79).
Available interest bearing securities, such as annuities, mortgages, the
census and the Venetian prestiti, typically offered annual coupon
payments reducing the need to deal with compounding.
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Where solutions to compound interest problems were required,
reckoning masters such as Chuquet had the ability to make such
calculations. For example, Chuquet poses the following problem:

A merchant has lent to another a sum of money at the interest of 10%, and the
interest earned like the principal at the end of every year. It happened that at
the end of three years, the debtor is found to owe, as much in interest as in
principal, the sum of 100 livres ... determine how much had been lent to him
in the first year.

Chuquet’s algebraic solution to this problem provides an answer that
correctly incorporates the use of compound interest. Chuquet poses at
least seven compound interest problems. Yet, none of these problems
appears in the commercial arithmetic. Rather, these problems appear
in a general section dealing with mathematical problems. Significantly,
Chuquet continues the received practice of treating compound interest
as being of mathematical, as opposed to commercial, importance.

More precisely, the Triparty has three main parts, dealing with
arithmetic, calculation of roots and algebra. In addition to the main
body of the Triparty, three supplementary sections are provided: a
section with applied problems; a geometry; and, the commercial
arithmetic (Flegg et al. 1985, p.197):

Collections of mathematical problems, ranging from straight-forward
calculations in fancy dress to purely logical brainteasers, have a long history,
and played a prominent role in the transmission of mathematical culture
throughout the Middle Ages ... In Chuquet’s manuscript, the prime purpose of
the Problems is ... to illustrate the applications of his Triparty, and in
particular of the rule of first terms.

Though it is acknowledged that compound interest was common in
commercial practice, and Chuquet has the ability to make the requisite
calculations, the concept is still not included in the commercial
arithmetic. This situation changes during the 16th century.

In a detailed examination of fourteen French commercial arithmetics
written during the 16th century, Davis (1960, pp.22-4) finds ten of the
fourteen dealing with problems of simple and compound interest, with
two of the ten dealing with simple interest only. One of the ten
arithmetics is Larismethique (1520, Lyons) by Etienne de la Roche, a
probable student of Chuquet who also plagiarized liberally from the
Triparty. 1.a Roche’s arithmetic makes a clear distinction between
simple and compound interest:
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To merit [interest] is to make one’s money earn or work in merchandise or
otherwise at so much per livre or per cent at the finish of a year or of a month
or of some other period. Simple merit [interest] occurs when the principal
alone eamns at the finish of the period. Merit at the finish of term [...
compound interest] occurs when the principal earns at the end of the term, and
then the gain and principal both earn ...

The following compound interest problem is then posed:

A man lends another 100 livres for the space of two years and six months, to
merit at the finish of term at the rate of twenty per cent. The question is what
does it all amount to at the end of the term?

The solution la Roche offers does not proceed beyond methods provided
by Chuquet.

In keeping with the still prevalent social restrictions on usury, four
of the ten commercial arithmetics examining simple and compound
interest contained criticism of the payment of interest but still discussed
the subject because of the prevalence of the practice. One of these
arithmetics was the amended 1561 French translation of the commercial
arithmetic by important Dutch mathematician Gemma Frisius (1508-
1555). Written originally in Latin around 1536, the Gemma arithmetic
exhibited at least 59 editions in the 16th century and a number of
further editions in the 17th century (D. Smith 1958, v.1, p.341). The
amended French text states:

Howsoever much this name of usury myst be execrable among Christians,
nevertheless because necessity constrains many to this usage, I will speak a
little of its computation.

Passing reference is made to compound interest as ‘Judaic’.

The connection between compound interest and Jewish business
practice is made in at least two other arithmetics. Jacques Chauvet in
Les Institutions de 1’Arithmetique (1578, Paris) describes compound
interest as ‘abominable’ and says the practice is used only by Jews.
However, this text is somewhat elementary. The more detailed work
of Milles Denorry, L’Arithmetique de Milles Denorry (1574, Paris)
refers to compound interest as ‘Judaic usury’ and observe that the
practice was ‘vituperable for Christians, thus punishable, and permitted
only to Jews’. However, de Norry goes on to observe that compound
interest had become ‘so common that even the greatest were mixed up
in it’. De Norry gives a full treatment to the calculation of compound,
interest (Davis 1960, p.24).
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Of the four arithmetics examined by Davis that do not treat interest
problems, two are the earliest considered, 1512 and 1515 respectively,
and were printed in Paris, not Lyons which was the primary financial
centre at that time. The other two date from the mid-century and were,
again, printed in Paris. One of the authors, Pierre Forcadel, offers
another commercial arithmetic that does treat compound interest
problems. Of the two treating only simple interest, one is from Poitiers
(1552) and the other is a 1578 French translation of Nicolas Tartaglia.
As Tartaglia treats compound interest in other works, if Davis is correct
the omission is one of text selection rather than lack of recognition by
the primary author. Perhaps the most interesting commercial arithmetic
examined by Davis (1960) is a 1515 arithmetic by a French monk and
a Spanish monk printed in Lyons. This arithmetic deals with problems
involving loans with late repayment and loans without interest. This
arithmetic also contains an uncritical explanation of both simple and
compound interest.

The Development of Commercial Arithmetic

As with much of early financial economics, it is difficult to trace the
origins of specific valuation methods. One reason for this was a lack
of attention given to these developments by the scholars of the time.
This attitude gradually changed during the 16th century as commercial
activities gained social importance. Within the university community,
these activities were still largely considered within the realm of
merchants and, with certain exceptions such as Petrus Ramus in
Germany and Rudolf Snellus in Holland (van Berkel 1988), did not
warrant the close attention of true scholars. In addition, certain
valuation techniques were considered proprietary by the algorist or
merchant firm involved and considerable effort was made to protect
trade secrets. Where scholarly contributions were involved, the practice
of plagiarism makes it difficult to correctly identify the originators of
important developments.

As financial markets and instruments developed, so did the types of
problems examined in the commercial arithmetics. Mathematical texts
continued to examine the calculation of compound interest rates. For
example, Tartaglia’s General Trartato (1556) contained the following
problem involving the interest rate applicable to a fixed term annuity:'!

A merchant gave a university 2814 ducats on the understanding that he was to
be paid back 618 ducats a year for nine years, at the end of which the 2814
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ducats should be considered paid. What compound interest did the merchant
earn on his money?

As such problems were not often encountered in commercial practice,
solving for the interest rate as the root of an algebraic equation was still
primarily of interest to mathematicians. However, variation in
commercial interest rates and the widening number of fixed income and
other securities requiring valuation were creating a commercial demand
for calculations involving compound interest. In turn, this demand was
reflected in the emergence of tables for use in compound interest rate
calculations.

One of the French arithmetics examined by Davis (1960) is the
significant L’ Arithmetique (1558, 1566) by Jean Trenchant printed in
Lyons. One chapter of this text is concerned with simple and
compound interest. The chapter features detailed calculations of annuity
payments, as well as future and present values, for a given rate of
interest. More importantly, Trenchant’s publisher included in
L’Arithmetique tables for annual compounding that are given for both
future value, (1+7)7, and the future value of an annuity, [(1 +n)7-1)/r,
evaluated at r = 4% for T e {1,2,3,4,5,6}. Another table for r=10%
for periods less than a year (in complete months) is also given (Lewin
1970). These tables are convincing evidence of the extent to which
compound interest calculations were in general use in financial
transactions.

Trenchant considers a range of problems involving compound interest
(Lewin 1970). One problem involves a comparison of the relative value
of a loan at 4% per quarter and an annuity of 5% per quarter, both
covering 41 quarters. The loan is shown to be marginally superior.
Another problem involves a merchant buying goods in exchange for an
agreement to make payments totalling £1548, paid at the rate of £100
per year (15 yearly payments of £100 with a final payment of £48 in the
16th year). The problem is to find the present value of the payment
stream (discounting at 17% per annum). Significantly, Trenchant
determines the present value solution of £536 by individually
discounting each of the cash flows and does not take advantage of the
simplification provided by the closed form solution for the value of a
term annuity. This ‘brute force’ method of calculation is used despite
Trenchant’s recognition, elsewhere, of the future value of an annuity
reflected in the inclusion of the relevant Table.

Trenchant recognizes that compounding more frequently is desirable
to the creditor, 4% per quarter is better than 16% per year. A
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problem is provided where the rent on a farm is £500 for three years
and the present value of the payment stream is determined as £1105
using quarterly compounding:

500 500 500

+ + = 1105

1.04)¢  (1.04¢ (.02

Perhaps the most interesting problem encountered in the chapter is: ‘If
for 6000 one receives 7000 at the end of three years, how much would
100 increase by in one year?’ Trenchant is able to provide an algebraic
manipulation, involving the taking of a cube root, that solves the
problem. However, the problem is only given in isolation. No attempt
is made to generalize the solution procedure.

Trenchant’s chapter on commercial arithmetic is far from being the
most sophisticated of the 16th century. Much closer to this standard is
the work of Simon Stevin (1548-1620) who is an early example of an
important university mathematician drawn to solving practical financial
valuation problems, complementing the work of the commercial
algorists.”” Simon Stevin was a Flemish mathematician working in
Holland, credited with definitively introducing the decimal fraction into
European mathematics (D. Smith 1958, v.1, p.343).” In one of the
chapters in La Practique d’Arithmetique (1585), Stevin goes
significantly beyond Jean Trenchant in providing tables for both present
value (1+7)7 and present value of annuities [(1+7)T - 1)/(r(1+7)7] for
Te{1,23,..,30}and r ¢ {1%,2%,...,16%}. Stevin also provides
tables for the same time periods applicable to rates of interest for years’
purchase of 15-22 years, that were of importance in the pricing of
freehold properties.

Stevin does not provide future value of annuity tables but, instead,
demonstrates the relationship between present value and future value,
for both single cash flows and annuities. A table is provided for the
future value of an annuity, [(1 + r)T - 1]/r, associated with 15 years’
purchase (6%%).!* Stevin then proceeds to show how the present
value and present value of annuity tables can be used to construct the
future value of the annuity using the relation: [(1 + r)T - 1}/r =
{lA+P7 - 1)/[x1 + N7} / {1 + »N™}. Stevin also demonstrates the
method of using the tables for doing yield to maturity calculations. One
example problem of this technique involves a term annuity problem:
‘Someone owes £1500 p.a. to be paid over the next 22 years, and he
pays his creditor £15,300 in lieu; what rate of interest does this
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represent?’ Using the tables Stevin correctly identifies the solution as
just more than 8%.

One interesting convention that Stevin uses is the practice of not
considering less than annual compounding, providing a number of
arguments against the practice. Where fractions of a year are involved,
simple rather than compound interest is to be used. This convention is
carried forward to valuing interest for problems where the term to
maturity is greater than one year, but still involve a fraction of a year.
For example, consider the solution posed to the problem:

One wishes to know how much £800 capital, with its compound interest at a
rate corresponding to 15 years’ purchase, would amount to in 16% years.

The solution given is:

[800 (1 + )9 (1 + %) = £2321 where r = 6%%

In this solution, compounding is applied for 16 years and then simple
interest for the last half year.

Stevin’s method of handling interest for periods of less than one year,
where the full term exceeds one year, is not consistent with modern
convention.”® However, instead of being a reflection on the soundness
of Stevin’s technique, this divergence serves to illustrate the importance
of convention in determining the specific methods that are used to make
interest calculations. Stevin provided a number of sound arguments in
defence of his treatment of interest calculations for fractions of a year.
For example, Stevin observed that compound interest is intended to
benefit the creditor. Yet, where fractions of a year are involved,
compound interest will provide a smaller return than simple interest,
which acts to the detriment of the creditor. Consequently, interest for
fractions of a year ought not to be compounded.

Another argument provided by Stevin for using simple interest was
that, because the prevailing convention was to calculate interest over a
one year term or less using simple interest, then consistency required
similar treatment whenever interest for fractions of a year are involved.
Despite the soundness of Stevin’s argument, the convention suggested
is not reflected in modern practice. One possible explanation for this
is the social aversion to usury. Stevin’s convention would result in the
highest possible interest payment by debtors. There is also the
prevalence of legal maximum interest rates that were common in 16th
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and 17th century legislation permitting the payment of interest, for
example, the 1545 Act in England that legalized interest payments and
provided a legal maximum rate of 10%. Stevin’s convention could,
arguably, result in a technical breach of the maximum on loans that
carried a stated interest rate equal to the maximum allowable.

The Forgotten Work of Richard Witt

By the turn of the 17th century, the important financial centres of
Europe had available commercial arithmetics, as well as academic
arithmetics containing chapters on commercial arithmetic, written in the
vernacular and dealing in considerable detail with the subject of
compound interest. A number of sources contained tables needed to
simplify compound interest calculations for practitioners. Further
developments in the area of solving interest valuation problems involved
broadening and deepening the subject matter, as well as increasing the
distribution of advanced knowledge to lesser financial centres. The
17th century witnessed the emergence of texts written in the vernacular
by commercial algorists that were technically advanced and dedicated
solely to commercial interest rate calculations.

One important text that reflects the broadening and deepening of
interest rate analysis was written by English commercial algorist
Richard Witt, Arithmeticall Questions, touching the Buying and
Exchange of Annuities ... (1613, London) (Lewin 1970) (Figures 5.1
and 5.2). The history of this book is something of an enigma. By
standards of early 17th century commercial arithmetic, the contents of
the book are sophisticated. The book was considered to be of enough
significance to appear in a second edition in 1634. This second edition
appeared after the death of Witt and was produced by Thomas Fisher
who made a number of additions to the original text. However, Fisher
observes in his introduction to the book the ‘the Book is almost forgot
and out of use’. One element of the enigma surrounding this book is
why it failed to have much staying power or later notoriety.

One possible reason for the lapse into obscurity is that the book
became a victim of what Thomas Fisher described in his introduction
as the ‘change of times and customs’. It is also possible that the book
was too much for most practitioners, who could get what was required
from more accessible sources, such as the tables of Thomas Clay or,
somewhat later, from the ready reckoner of William Leybourn. In turn,
little is known of Richard Witt other than his description on the title
page as a ‘practitioner in the Arte of Numbers’. He was almost
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Figure 5.1 Title page from Witt (1613)

ARITHMETICALL
QVESTIONS,

TOFCHING
The Buying or Exchange of AAnnui-
ties; Taking of Leafes for Fines, oryearly
Rent; Purchalc of Fee-Simples; Dealing for pre-
fentor future Poffefsions; and other Bargaincsand

Accounts,wherein illowance for disbur fingor
forbeareance ef mancyisin:nded;

Briefly refolued,by meansof certain Breuiats,

Calculated by B, #. of London, pratitioner in
the At of Nvus exs,

Examinedalfoand corveddedat the Preffe,by
the Author bimfelfe.

R 3,

XY &
"B A 43
52
ST

LONDON,
Printedby H, L.for Richard Redmer ; and areto beTolde
- athis Shoppeatthe Weft-dorc of S, Pawlesac the
SigncoftheStarre. 1 61 3.

Source: This image was adapted from Lewin (1970).
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Figure 5.2 The first question, with the worked solution, from Witt (1613)

The firft Queftion,beingan exampls
ofthe firlk Dire&ion,

If 1%-beputforthas intereft sfter 1oper Cent.per
Annum , Insereft,and Intereft vpon.Intereft,for 30,
geares 3 ¥nto how much will it amsiasnt by the ¢end
of shat time !

BEcaufé the timein chis Queftionis 30.yeares,looke
in the Breuiat next before fet downe, for she third-
eth number; whichyou thall finde tobe 174494022.
from this cut o 7.figutes , beginning to tell from your
right hand towards your left, & theniewill ffand thuss
17} 449 4022. The 17.that ftandechon your et b ad
is 174,

Now Muldiplic 449402 1.(the 7. Bgnrescut off ).b,y
2 0.and theproduét will be. 89880440. fromhisallo
cutoff 7.figures,and chénicwil ftand thus 8|9 88 o440
The 8.onyourlefihandis 8 h,

Now Multiplie 98804 40. ( thefigures laft cut off }
by 12.and the produétwillbe 118565280. from this
aifo curoff 7.fgures,and itwill ftand thus 1118565280:
The 1 1.0n your lcfthandis 11d.

So haue you found,thatif 1'ibe put forth ac [ntere
after 1o,per Cent.per Ann. Interelt, and Intereftvpon
Incereft for 3 o.yeares,it willamount by the 30.yearss
end,vnto 171.8th.11d. '

The Worker

[17}4493022
Facit<(h 8
,d 1

988044
Source: This image was adapted from Lewin (1970).

854528
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certainly alive in 1613 when the first edition was printed and, according
the Thomas Fisher’s introduction to the second edition, had died by
1634. Witt, apparently, lacked any desire for self-promotion, a trait
that probably extended to promotion of Arithmeticall Questions.'®

Witt’s book has two significant features: a sequence of detailed
interest tables, that Witt refers to as ‘breviats’; and 124 problems that
are solved using the tables.”” The detail and sophistication exhibited
in the interest tables is impressive. Arithmeticall Questions starts with
a discussion of the relationship between the various tables for future and
present value, both for single cash flows and annuities. A future value
table listing the factors for (1 + )T for r = 10% and T ¢ {1,2,...,30}
is provided. Following this table is a demonstration of how to use to
the values in the table to comstruct the associated factors for present
value of single cash flows, present value of an annuity and future value
of an annuity. The 10% rate of interest is important because this was
the prevalent rate in England at that time for financial transactions other
than those involving land. After demonstrating the calculations,
complete present value, present value of annuity, and future value of
annuity tables for r = 10% and T ¢ {1,2,...,30} are provided.

The r = 10% case was important because of the practical importance
of calculations involving this rate. Having demonstrated how to
calculate various factors from the future value tables, Witt also provides
future value tables for a range of less practically important interest
rates, r € {9%, 8%, 7%, 6%, 5%} for T e {1,2,...,30}. Lewin (1970,
p-124) observes that: ‘The other functions (for present value, present
value of annuity and future value of annuity) are not quoted, however,
a lack of which was evidently felt by at least one reader, because the
British Museum has a copy of the book in which there has been inserted
contemporary manuscript tables that give the missing functions at
length’. As the calculations involved in land valuation conventionally
were done using 16 years’ purchase, Witt provides a complete set of
present and future value tables for 6% %.

Witt’s work proceeds substantially further than just providing more
detailed tables than those given by Stevin. In particular, Witt goes
beyond Stevin in considering less than annual compounding frequencies.
Future value tables for (1 + )™ and (1 + r)™ are given for odd values
of T, for the practical interest rates of 7 = 10% and r = 6% %. Other
tables relevant for less than annual compounding frequencies are also
given.
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The content of certain problems is another feature of Arithmeticall
Questions that goes beyond Stevin. For example, Witt gives the
following problem (Q.99):

A man hath a Lease of certaine grounds for 8 years yet to come: for which he
payeth £130 per Ann. Rent, viz. £65 per halfe yeare: which grounds are worth
£300 per Ann. viz. £150 per halfe yeare. If this man shall surrender-in his
Lease; what ready mony shall he pay with it to his Land-lord for a new Lease
of 21 years, not altering the Rent of £130 per Ann. reckoning such int. as men
have when they buy Land for 20 years’ purchase, and receive the Rent halfe
yearly?

The solution requires recognizing that 20 years’ purchase translates to
5% interest which is 2%2% ‘halfe yearly’, an interest rate for which
Witt provides a table. The answer of £1085 1s 6d now follows because
the landlord will have to forego an annuity of £85 per half year for 13
years.

Two other problems provide useful examples of the level of
sophistication in Witt’s problems. Q.70 poses the following valuation
problem:

One oweth £900 to be paid all at the end of 2 yeares: he agreeth with his
Creditor to pay it in 5 yeares, viz. every yeare a like summe. They demaund
what each of these 5 payments shall be, reckoning 10 per Cent. per Ann. int.
and int. upon int.

The solution requires the future value of £900 to be discounted to the
present value and, then, the annuity payment to be determined by
solving a present value of annuity problem. In this fashion, Witt
determines the correct annuity payment of £196 4s 3d.

Perhaps the most interesting solution given to the various problems
posed by Witt is associated with Q.103:

A oweth to B £1200 to be paid in 6 yeares, in 12 equall payments, viz. at the
end of each halfe yeare £100. They agree to cleare this debt in 3 yeares, in
6 equall payments, viz. at the end of each halfe yeare, one payment. The
Question is, what each payment ought to be, reckoning interest after the rate
of 10 per Cent per Ann. and int. upon int.

A conventional solution to this problem can be determined by equating
the discounted value of the annuity stream of £100 for 12 half-year
periods with the discounted value of £C for 6 half-year periods and
solving for C. The exact solution requires recognizing Witt’s practice
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of using (1 + 7)™ instead of the modern convention of (1 + 7/2)" to
discount the T period cash flow.
More precisely, the solution can be determined by solving:

100, 100 , 100
a+p? @=+0 o+t
o o o
= — ot
@+ @@=+ a+n»
= 100 |1 1 12 l-___L__
[ +( +r) ]{r r(1+r)6]
cchsaspn|t - ——
1+ r ]{r r(1+r)3]

Solving this for r = 0.10 gives the solution stated by Witt of
£175.13145 or £175 2s 7d. Yet, Witt is able to show that this solution
can be obtained as:

00 + 100 - 217525 7d

@«

Lewin (1970, p.126) describes the method Witt uses to arrive at this
solution as ‘extremely elegant’.

From a careful consideration of the tables and problems, Lewin
(1970, p.128) concludes:

it is clear that by 1613, the techniques of compound interest were no longer
still in their infancy. It was accepted that compound interest should be allowed
in ordinary business and legal transactions, and the methods of carrying out the
arithmetic were clearly understood. The differences between simple and
compound interest were fully appreciated, as well as the difference between,
for example, a rate of 10% per annum and a rate of 214 % per quarter.

One additional interesting feature of Arithmeticall Questions is the
absence of any problems that involve solving for a yield; not even for
integer value interest rate problems, let alone the more complicated
variants that involve interpolating between factors listed in appropriate
tables. The solution of such problems does have a long history within,
the more mathematical stream of commercial arithmetic. However,




Simple Interest and Compound Interest 175

Lewin (1970, p.130) is probably correct in stating: ‘it may be that there
was little call for this in practice’.

Malynes on Compound Interest

Malynes’s Lex Mercatoria (1622) is not a commercial arithmetic.
However, the Lex Mercatoria does reflect the impact that commercial
arithmetic had on the acceptance and sophistication of interest
calculations of that period. Chapter 14, ‘Of the true Calculation of
Moneys delivered at Interest’, examines the ‘absurditie’ of the legal
interpretations for the then-prevailing maximum annual interest rate of
10%. The legal requirement involved the payment of simple interest
only. On a one year loan contract at 10%, £100 would earn only £10.
Malynes recognizes the ability to legally earn more than 10% in one
year by, instead of lending using a one year contract, a sequence of
three month contracts could be used, with the principal incremented by
the amount of interest paid as each contract takes effect. An
examination of the discussion in the Lex Mercatoria is useful as it
reflects the general level of merchant knowledge of compound interest,
whereas the Arithmeticall Questions better reflects the level of specialist
knowledge.

Malynes (1622, p.346) then considers the same strategy applied to
longer term loans:

In like manner is it for moneys delivered out for a longer Time; as for
example, one delivered out £100 for four years, for which at the four years end
he can receive but £140; but if he had delivered out £100 for one year, he may
at years end receive £10 for Interest, and continue the £100 pounds for the
second year by a new agreement, and then receive another 10 pound, and so
on for the third and fourth year. Now whereas by reason of his several
agreements according to time, he hath altered the property of Interest money,
and received £10 the first year, he may put out again this £10 as his own for
another year, and so have Interest thereof twenty shillings, whereby he
receiveth £11 the second year, which being put out the third and fourth year,
will yield him after the same manner accordingly: so that he shall have above
£146 being thus delivered out, the body of his sum still remaining whole ...

While the exact answer of £146 and 8 shillings is not provided, the
concept of compound interest is clearly understood as is the
ineffectiveness of a maximum legal interest rate based on simple
interest. The ability to make payment at 10% compound interest is a
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matter of correctly structuring the loan contracts. Similar problems are
observed for term annuity payments.

Despite the recognition and appreciation of compound interest in Lex
Mercatoria, the contrast between Malynes and Witt is striking. Though
the first edition of Arithmeticall Questions predates the first edition of
Lex Mercatoria by almost a decade, the former is almost modern by
comparison.  Witt, the algorist, demonstrates a high level of
sophistication in making compound interest calculations while Malynes,
the merchant, is still quite concerned about the usury restrictions. Four
full chapters and parts of other chapters in Lex Mercatoria are dedicated
to various aspects of usury, with only one brief chapter dedicated to
‘the true calculation of moneys at interest’. Complicated interest
problems, of the sort discussed by Witt, are not considered. It would
seem that, when involved interest calculations were required in the early
17th century, the task would almost certainly be undertaken by a
specialist.

Compound Interest Calculations in the 18th Century

Despite considerable facility with compound interest within the
restricted community of specialists directly involved in making interest
calculations, by the end of the 18th century Halley (1693) found it
necessary to include a present value table for r = 6% and T e
{1,2,3,...,100} in the text of the ‘Estimate...”. In effect, the process of
refining and expanding the available tables needed for compound
interest calculations continued into the 18th century. This process was
expanded to include tables that could be used to calculate the present
values of life annuities. In addition to work on life annuities and
related problems by de Moivre, Simpson, Price and others, the
traditional problem of calculating present value and future value interest
tables continued. In 1726, John Smart published his comprehensive
Tables of Interest, Discount and Annuities. These tables, taken to nine
significant figures, are credited (Pearson 1978) with being the primary
source for tabular interest calculations in de Moivre, Simpson and
others.

Present value tables are only useful in solving certain types of
problems. In particular, it is difficult to use tables to calculate yields
from prices. In addition, in Halley’s time there was also the problem
of lack of tables with the precision needed to do specific problems, for
example, calculations involving an unconventional interest rate. In the
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‘Estimate’ (pp.602-3), Halley explicitly recognizes the ability to handle
many present value calculations using logarithms:

Now the present value of Money payable after a term of years, at any given
rate of Interest, either may be had from Tables already computed; or almost
as compendiously, by the Table of Logarithms: For the Arithmetical
Complement of the Logarithm of Unity and its yearly Interest (that is, of 1.06
for Six per Cent.) being 9,974694.

This suggested use of logarithms to derive solutions to present value
problems was an extension of Halley’s mathematical interest in the
computation of logarithms. In 1698, Halley was to publish a paper in
Philosophical Transactions: ‘A most compendious and facile Method for
Constructing the Logarithms, without regard to the Hyperbola, with a
speedy method for finding the Number from the Logarithm given’.
Pearson (1978, p.87) credits this paper for also containing ‘the first
proof of what we now call the exponential theorem’, the result that ¢
is the limit, as n tends to infinity, of [1 + (I/m)J*.

In 1704, Halley was appointed Savilian Professor of Geometry at
Oxford University. Sometime during his tenure at Oxford Halley wrote
‘Of Compound Interest’, a comparatively scarce work that was
published in Sherwin’s Mathematical Tables (1761). In this work,
Halley provides numerous worked examples of the use of logarithms to
solve present value problems involving single cash flows and annuity
streams. Halley states his rationale for the article as: ‘A principal use
of logarithms is to solve all cases of compound interest which are not,
without great difficulty, attainable by the rules of common arithmetic’.
That Halley would advocate and illustrate the use of logarithms in the
context of practical fixed income calculations reflects a number of
possible observations. In particular, by the early 18th century
mathematical knowledge of practitioners had expanded to include
logarithms. The practical use of logarithms was enabled by the
widespread availability of logarithmic tables. Also, practitioners were
sometimes confronted with more complicated calculations where
logarithms would be useful.

Halley initially starts with a single cash flow problem. More
precisely, a single cash flow of £15 17s 6d is paid in order to receive
£31 18s 10%2d in twelve years time which translates into 6% compound
interest. Halley illustrates the method of solving for one of the values,
when the other three are given. For example, remembering that Halley
follows the convention of his time and uses ‘r’ to represent (1 + i):
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emergence of the monied commercial and rentier classes seeking
investment outlets.

Appendix: Life Annuity and Other Tables from Price (1772)

The availability and sophistication of tables used in present value
calculations is an important measure of the degree of development that
financial calculations had achieved at a given point in time. As a
benchmark for the state of development of financial calculations at the
end of the period under consideration, a sampling of the tables included
in Price (1772) is provided (Figures 5.3 and 5.4). It is not surprising,
given Price’s concern with life annuity valuation problems, that various
life tables are included. In total, the collection of tables is an expanded
collection of the tables provided by de Moivre, A Treatise of Annuities
on Lives. De Moivre provides: four different life tables, by Halley,
Kersseboom, Deparcieux, and Smart/Simpson; a table for the ‘Sums of
Logarithms’ from 10 to 900; five present value of annuity tables for r
e 3%, 3.5%, 4%, 5%, 6%} and T ¢ {1,2,3,...,100}; and, five
corresponding tables for ‘The present Value of an Annuity of one
Pound, to continue so long as a Life of a given Age is in being’, for
ages from 1 year to 86 years with rates of interest r ¢ {3%,3.5%,4%,
5%, 6%}.1°

Price includes fourteen tables in his appendix. In addition, there are
a number of other tables scattered here and there throughout the text.
Of the fourteen tables, the first two are for present value of a single
cash flow and present value of an annuity. Five different interest rates
are given: 3, 3%, 4, 5 and 6 percent. The frequency is annual from 1
to 100, with the annuity table also giving the value of a perpetuity.
Tables III-V contain different life tables, one by Halley and two others,
one for Northampton and one for Norwich. The first page of Table VI
is reproduced here as Figure 5.3. This table gives the present value of
a life annuity ‘according to Mr. De Moivre’s hypothesis’. Table VII
gives the present value of a joint life annuity, again according to Mr De
Moivre’s hypothesis.

Tables VIII-IX are of considerable historical interest. Table VIII is
a life table, the first page of which is reproduced here as Figure 5.4.
This table explicitly recognizes the contribution of Mr Simpson for
deducing the life table ‘from observations on the bills of mortality in
London for 10 years, from 1728 to 1737’. It is now believed that this
work was primarily the product of John Smart, though it appears that
Simpson was given the credit at the time that Price was writing. Tables
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Figure 5.3 Table of life annuity values from Price (1772)

. ! V. . .
260 APPENDIX. -
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Source: Adapted trom Price (1772).
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Figure 5.4 One of the life tables contained in Price (1772)
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Note: This table demonstrates the common perception that Simpson was the source of the life
table that probably originated with Smart.

Source: This image was adapted from Price (1772).
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IX, X and XI develop the information in Table VIII: Table IX giving
the ‘Expectations of Life in London’, Tables X and XI giving the single
and joint life annuity prices derived from the supposed Simpson life
table.

Tables XII-XIV are concerned with providing information from an
updated life table for London, ‘formed from the Bills, for 10 years,
from 1759 to 1768’. Table XII gives the life table, Table XIII derives
the ‘true Probabilities of Life in London ’till the age of 19°, and Table
X1V extends the results to all ages.

Notes

1. To be most effective, modern interest calculations require the cash flows to be
determinate. This permits important measures such as the yield to maturity to be
estimated. The yield to maturity is an important market measure for comparing bond
values. As the internal rate of return, the yield to maturity is also used in capital
budgeting decisions. However, the yield to maturity embeds an assumption that the
coupon cash flows can be reinvested at the offered yield to maturity. This means that the
yield to maturity is only indicative, it is a ‘promised yield to maturity” and not the actual
return which will be earned. Many of the fixed income securities traded in the sixteenth
to eighteenth centuries were not readily adaptable to the convention that the cash flows
were determinate. Redeemable annuities would often be redeemed when state finances
permitted, meaning that the term to maturity was not certain. Even perpetual annuities
would be redeemed under certain circumstances. Life annuities offered an even more
indeterminate cash flow pattern. For these type of securities, interest measures such as
the yield to maturity were not as useful. Hence, both years’ purchase and the more
modern measures of relative value lack exactness. (Years’ purchase would have difficulty
valuing a zero coupon bond but this type of security was not common in early financial
markets.)

2. One reason that US discount rates differ from true yields is the convention that the
year has 360 days. This results in the unusual (365/360) adjustment when pricing a one
year security.

3. Simple interest does not involve compounding, that is, the payment of interest on
interest. For example, assume that $100 is invested at 4% a year for five years, using
simple interest, with all payments made at maturity. In five years time, the investor
would receive $120, the $100 return of principal together with $4 per year for five years.

4. To use the perpetual solution to solve for the term annuity certain lasting until T,
observe that the price of a term annuity can be determined by subtractingthe current price
of an annuity starting in year T from the price of a perpetual. The price of the perpetual
is 1/r and the price of the perpetual starting at T (first payment at T + 1) is 1/r discounted
back at 1/(1 + r)~

5. In modern applications, the series solutionto log[1 + x], where log is the natural log,
is used to justify the use of x for log{! + x], when x is sufficiently small, as in the case
of an interest rate. For example, this approximation could be used in approximatingthe
domestic currency return on a foreign asset (Rg): (1 + R) = (1 + Rp(1 + e), where e
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is the exchange rate return and R is the return denominated in foreign currency terms.
Using the log approximation, it follows that Ry can be set approximately equal to R; +
e. From this, a less complicated closed form for the variance of the domestic currency
return on a foreign asset can be derived.

6. N. Mercator is not the same individual as Gerardus Mercator (1512-1594), the
Flemish cartographer and mathematician who devised, in 1568, the Mercator projection
in mapping. Mercator projections were an important advance in navigation as maps of
this type allowed a straight-line on the map to plot a course which could be followed
without changing compass direction. The series sofution to log[1 + x] provided by N.
Mercator was presented prior to the introduction of the calculus.

7. The stated solution is: for Piero, 138 ducats, 21 grossi, 11 pizoli and remainder; for
Polo, 248 ducats, O grossi, 13 pizoli and remainder; and, for Zuanpe, 176 ducats, 2
grossi, 7 pizoli and remainder. The Treviso proceeds to check the solution, so that ‘no
one has been cheated’, by adding together the shares to verify that the total is 563 grossi.

8. The third problem is a more complicated variation of the second: ‘Three men,
Tomasso, Domenego, and Nicolo, entered into partnership. Tomasso put in 760 ducats
on the first day of January, 1472, and on the first day of April took out 200 ducats.
Domenego put in 616 ducats on the first day of February, 1472, and on the first day of
June took out 96 ducats. Nicolo put in 892 ducats on the first day of February, 1472, and
on the first day of March took out 252 ducats. And on the first day of January, 1475,
they found that they had gained 3168 ducats, 13 grossi and 1/2. Required is the share of
each, so that one shall be cheated.” The solution procedure is an extension of the rule-of-
three procedure used to solve problem 2. However, due to crediting Nicolo with three
months full investment instead of only one month, ‘the solution stated does not satisfy the
given conditions of the problem’ (Swetz 1987, p.147). Ignoring the remainders, the
solution is given for Tomasso as, 1052 ducats 11 grossi and 8 pizoli, for Domenego, 942
ducats 3 grossi and 21 pizoli, and for Nicolo, 1173 ducats 22 grossi and 17 pizoli.

9. To see how this cubic equation solves the problem posed requires some further
discussion. Franci and Rigatelli observe: ‘The most general formulation of the problem
is the following: Calculate at what rate the lira was loaned per month knowing the capital
is A lire, and after three years B lire are given back. Further interest must be added to
the capital at the end of each year.

Let x denari be the rate of one lira per month. If we remember that one lira is equal to
240 denari, we obtain the equation: x* + 60 x* + 1200 x = 8000 ((B/A) - 1).” This
approach can be compared with the expansion of the modern form of the pricing problem
originally posed:

10010 10, g5 i g5i% il
Qesdip 10 2 12 1
12

In the coinage of the time, a denari was the same as a grossi, this equivalenceoriginating
from the more formal denari de grossi. The coinage used further required 20 soldi = 1
lira and 12 grossi = 1 soldo. From this, the relation of 1 lira with 240 denari is
explained. The cubic equation stated for arriving the appropriate solution now follows by
solving the modern cubic in terms of denari, which requires grossing up by 240. But, in
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order to obtain a monthly rate which requires division of the annualized interest rate by
twelve, the equation is only multiplied through by (20 = 8000.

10. There are various practical instances where such calculationswould be required. For
example, a merchant may want to compare the promised return on a one year investment
with the return which would be earned on a six month investment followed by a
reinvestment of principal plus interest in another six month investment.

11. Guiliaume Gosselin (1578, Paris) is a French translation, with additional notes by
Gosselin, of the Nicolas Tartaglia arithmetic, the General Trattato. It is unclear why this
work is examined by Davis (1960) and identified as dealing in simple interest problems
only. Smith (1970, p.278) makes reference to the General Trattato as: ‘Indeed, there is
no other treatise that gives as much information concerningthe arithmetic of the sixteenth
century, either as to theory or application. The life of the people, the customs of
merchants, the struggles to improve arithmetic, are all set forth by Tartaglia in an
extended by interesting fashion.” As Tartaglia did consider compound interest in the
General Trastato, the Davis (1960) claim about the omission of compound interest is
either a mistake or is due to Gosselin’s editing of the original text in translation and is not
to Tartaglia’s lack of knowledge in this area.

12. Stevin is sometimes referred to using the Latin form, Stevinus. D. Smith (1970,
p.386) refers to La Practique d’Arithmetique as "an attempt at a practical textbool, but
too scholarly for its purposes.” The interest tables which are included in Stevin (1585)
were produced and published three years earlier.

13. There is usually some room for debate over the introduction of notational advances,
such as the decimal fraction. De Morgan (1847) claims: ‘I now hold it next to certain that
the same convenience which has always dictated the decimal form for tables of compound
interest was the origin of the decimal fractions themselves.” In effect, Stevin’s 1582
production of compound interest tables can be credited as the original contribution for
introducing decimal fractions into European mathematics. Though there is evidence that
decimal fractions were used by Chinese and Arabic mathematics some time earlier, up to
Stevin's time the practice was unknown in Europe.

14. The calculation of this interest rate has to do with the convention used to specify
interest rates. Because years purchase is price divided by annuity payment (YP = P/A)
and the annuity payment can be calculated by the price times the stated interest rate (4 =
rP), it follows that years purchase can be approximatedas YP = 1/r. Hence, normalizing
the price to 100, years purchase times the interest rate (taken as a whole number) will
give 100. There is no connection being made between the term to maturity of the loan
and the interest rate, as in the PVIFA. Using modern compound interest calculations, to
warrant a price of 100, an annual payment of 6% would require a term of well over 40
years to justify an interest rate of 6%%.

15. Instead of calculating 800(1 + r)'**, modern convention would probably do the
calculation as 800 [1 + (t/2)F*.

16. It is possible to make some conjectures about Witt’s possible background. The
surname “Witt’ is not a common English name, this surname being more common in the
Low Countries. Witt’s presence in England around the end of the beginning of the 17th
century is consistent with the hypothesis that he was part of the mass emigration from
Antwerp and environs associated with the various conflicts which affected that area at the
end of the 16th century. This wave of skilled emigration affected many individuals
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involved in the carly history of financial economics. For example, the family of Joseph
de la Vega emigrated from Antwerp first to Germany and, later, settled in Amsterdam.
Gerard de Malynes was also, most likely, part of this emigration. The sophistication of
Witt’s analysis would have required advanced training. Such training would have been
difficultto obtain in England. Such training would have been available in Antwerp during
its heyday as the commercial centre of Europe. If Witt had obtained such training in
England and then proceeded to develop an active practice as ‘a practitioner of numbers’,
it is likely that some paper trail would have been left. No such trail has yet been
unearthed.

17. The breviats attracted the attention of de Morgan (1847, p.575) as being an early
contribution to the use of decimal fractions which predates Napier by four years.

18. Recalling that the ‘Treatise...” is appended to the third edition of the Doctrine of
Chances, the table for the Sum of Logarithms is included in the Appendix to the whole
text. This table is used to solve a specific problem from the Docirine and is not of direct
relevance to the ‘Treatise...’.
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